Prob.SmbMixture#
SmbMixture.py
Copyright (c) 2020, SAXS Team, KEK-PF
- class SmbMixture(K, max_iter=100)#
Bases:
object
- calculate_mean_covariance(X, prediction)#
- Calculate means and covariance of different
clusters from k-means prediction
Parameters:#
prediction: cluster labels from k-means X: N*d numpy array data points
Returns:#
intial_means: for E-step of EM algorithm intial_cov: for E-step of EM algorithm
- fit(X, bins=None)#
- guess_initial_params()#
- initilize()#
- moderate_sigmas(sigmas)#
- solve_params(k, m1, m2)#
- smb_pdf(x, mu, sigma, scale=1)#