Prob.SmbMixture#

SmbMixture.py

Copyright (c) 2020, SAXS Team, KEK-PF

class SmbMixture(K, max_iter=100)#

Bases: object

calculate_mean_covariance(X, prediction)#
Calculate means and covariance of different

clusters from k-means prediction

Parameters:#

prediction: cluster labels from k-means X: N*d numpy array data points

Returns:#

intial_means: for E-step of EM algorithm intial_cov: for E-step of EM algorithm

fit(X, bins=None)#
guess_initial_params()#
initilize()#
moderate_sigmas(sigmas)#
solve_params(k, m1, m2)#
smb_pdf(x, mu, sigma, scale=1)#