DMM.dmm#
main module
- class DMM(k, interval=None, sigma=None)#
Bases:
object
class for denoised method of moments
Args: sigma: float, default None standard deviation. If sigma == None, will estimate sigma.
interval =[a,b]: floats, default [-10, 10] represents the interval of means [a,b]
num_components: int, required number of postulated components
- estimate(samples)#
estimate a model from given samples use two-step estimate: 1.(a) prelimnary estimation with identity weight matrix
estimation of optimal weight matrix (require all samples)
reestimate parameters using esimated weight matrix
Args: samples: array of float, required samples collected
Returns: an estimated ModelGM
- estimate_from_moments(moments, wmat=None)#
estimate a discrete random variable from moments estimate
Args: moments: array of length 2k-1 estimated moments of U of degree 1 to 2k-1
wmat: matrix of shape (k, k) weight matrix for moment projection, default identity matrix
Returns: an estimated latent distribtuion on at most k points
- estimate_latent_moments(samples)#
estimate moments of latent distribution (deconvolution) model: X=U+sigma*Z sigma must be given
Args: samples: array of length n
Return: array of length 2k-1 estimated moments of U from degree 1 to 2k-1
- estimate_online(samples_new)#
update the estimate a model from more samples only store a few moments and correlations
Args: samples_new: array of floats new samples
Returns: an estimated ModelGM
- estimate_select(samples, threhold=1)#
estimate with selected number of components
- estimate_with_wmat(samples, wmat=None)#
estimate a model from given samples using given weight matrix model: X=U+sigma*Z sigma must be given
Args: samples: array of float, required samples collected
wmat: array of shape (k,k) weight matrix, default identity
Returns: latent distribtuion
- sample_moment_cov(samples)#
return the sample covariance matrix of moments estimates
- select_num_comp(samples, threhold=1)#
select the number of components according to sample variance of moments estimate
- estimate_weight_matrix(m_estimate, model)#
estimate weight matrix: inverse of the estimated covariance matrix ref: [Bruce E. Hansen] Econometrics. Chapter 11.
Args: m_estimate: matrix of size (k,n) power of n samples from degree of 1 to k
model: discrete_rv
Return: consistent estimation for the optimal weight matrix