Gmm.FoleyGmm#

FoleyGmm.py.

adapted from:

https://towardsdatascience.com/gaussian-mixture-modelling-gmm-833c88587c7f https://www.kaggle.com/dfoly1/gaussian-mixture-model

Copyright (c) 2020, SAXS Team, KEK-PF

class GMM(C, n_runs)#

Bases: object

Gaussian Mixture Model

Parameters:
  • k (int , number of gaussian distributions)

  • seed (int, will be randomly set if None)

  • max_iter (int, number of iterations to run algorithm, default: 200)

centroids#
Type:

array, k, number_features

cluster_labels#
Type:

label for each data point

calculate_mean_covariance(X, prediction)#
Calculate means and covariance of different

clusters from k-means prediction

Parameters:#

prediction: cluster labels from k-means X: N*d numpy array data points

Returns:#

intial_means: for E-step of EM algorithm intial_cov: for E-step of EM algorithm

fit(X)#
Compute the E-step and M-step and

Calculates the lowerbound

Parameters:#

X: (N x d), data

Returns:#

instance of GMM

get_params()#
predict(X)#

Returns predicted labels using Bayes Rule to Calculate the posterior distribution

Parameters:#

X: ?*d numpy array

Returns:#

labels: predicted cluster based on highest responsibility gamma.

predict_proba(X)#

Returns predicted labels

Parameters:#

X: N*d numpy array

Returns:#

labels: predicted cluster based on highest responsibility gamma.