Models.EGH#
Models.EGH.py
Copyright (c) 2017-2025, SAXS Team, KEK-PF
- class EGH(**kwargs)#
Bases:
Model
- get_name()#
- get_params_string(params)#
- get_peaktop_xy(x, params)#
- guess(y, x=None, negative=False, **kwargs)#
- guess_a_peak_with_prop(x, y, prop)#
This function is used to guess a modeled peak with a given area ratio.
- x_from_height_ratio(ecurve, ratio, params)#
- class EGHA(**kwargs)#
Bases:
EGH
- get_name()#
- get_param_hints(pkey)#
- get_params_string(params)#
- guess(y, x=None, negative=False, **kwargs)#
- guess_a_peak_with_prop(x, y, prop)#
This function is used to guess a peak with a given area ratio, which has been generated (after the implementation of the same method of EGH) completely by Cody AI.
- guess_binary_peaks(x, y, p1, p2, guess_tau=False, debug=False, plot_info=None)#
- x_from_height_ratio(ecurve, ratio, params)#
- EGH_TAU_UPPER_LIMIT = 50#
This implemetation is based on the following paper A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks http://acadine.physics.jmu.edu/group/technical_notes/GC_peak_fitting/X_lan_Jorgenson.pdf
- egh_no_affine(x, H=1, tR=0, sigma=1.0, tau=1.0, a=0)#
- egh_params(x, params)#
- egh_x_from_height_ratio(alpha, tR, sigma, tau)#
- egha(x, H, tR, sigma, tau, a, raise_=False)#
- egha_impl(x, H, tR, sigma, tau, a, raise_=False)#